Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Filter by Categories
About Article
Analyze Data
Archive
Best Practices
Better Outputs
Blog
Code Optimization
Code Quality
Command Line
Daily tips
Dashboard
Data Analysis & Manipulation
Data Engineer
Data Visualization
DataFrame
Delta Lake
DevOps
DuckDB
Environment Management
Feature Engineer
Git
Jupyter Notebook
LLM
LLM
Machine Learning
Machine Learning
Machine Learning & AI
Manage Data
MLOps
Natural Language Processing
NumPy
Pandas
Polars
PySpark
Python Tips
Python Utilities
Python Utilities
Scrape Data
SQL
Testing
Time Series
Tools
Visualization
Visualization & Reporting
Workflow & Automation
Workflow Automation

Beartype: Fast, Efficient Runtime Type Checking for Python

Table of Contents

Beartype: Fast, Efficient Runtime Type Checking for Python

Beartype vs Static Type Checking

Static type checkers like mypy perform type checking only during development/compile time. This means that type errors may not be caught until runtime, potentially causing issues.

Let’s consider the following example:

# typehint.py
def calculate_statistics(data: list[float]) -> dict[str, float]:
    return {
        "mean": sum(data) / len(data),
        "first": data[0]
    }

numbers = [1, "a", 3]  # mypy error, but code will run
result = calculate_statistics(numbers)  # Fails at runtime during sum()

Running mypy on this code will raise an error, but the code will still run.

$ mypy typehint.py
typehint.py:8: error: Argument 1 to "calculate_statistics" has incompatible type "list[object]"; expected "list[float]"  [arg-type]
Found 1 error in 1 file (checked 1 source file)

However, running the code will raise a TypeError at runtime.

$ python typehint.py
Traceback (most recent call last):
  File "typehint.py", line 8, in <module>
>   result = calculate_statistics(numbers)  # Fails at runtime during sum()
>            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|     numbers              = [1, 'a', 3]
  File "typehint.py", line 3, in calculate_statistics
>   "mean": sum(data) / len(data),
>           ^^^^^^^^^
|     data = [1, 'a', 3]
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Beartype is a runtime type checker that enhances type safety by performing type verification at runtime. This catches issues that static analysis might overlook.

from beartype import beartype

@beartype
def calculate_statistics(data: list[float]) -> dict[str, float]:
    return {
        "mean": sum(data) / len(data),
        "first": data[0]
    }

# Fast runtime checking with clear errors
numbers = [1, "a", 3]
result = calculate_statistics(numbers)
---------------------------------------------------------------------------

BeartypeCallHintParamViolation            Traceback (most recent call last)

Cell In[15], line 12
     10 # Fast runtime checking with clear errors
     11 numbers = [1, "a", 3]
---> 12 result = calculate_statistics(numbers)

BeartypeCallHintParamViolation: Function calculate_statistics() parameter data=[1, 'a', 3] violates type hint list[float], as list index 0 item int 1 not instance of float.

Beartype vs Pydantic

Pydantic is another popular library for runtime type checking. However, it adds overhead during model creation and validation.

from pydantic import BaseModel
from typing import List

class StatisticsInput(BaseModel):
    data: List[float]

class StatisticsOutput(BaseModel):
    mean: float
    first: float

def calculate_statistics(input_data: StatisticsInput) -> StatisticsOutput:
    return StatisticsOutput(
        mean=sum(input_data.data) / len(input_data.data),
        first=input_data.data[0]
    )

# Validates during model creation, but adds overhead
numbers = [1, "a", 3]
input_model = StatisticsInput(data=numbers)
---------------------------------------------------------------------------

ValidationError                           Traceback (most recent call last)

Cell In[14], line 19
     17 # Validates during model creation, but adds overhead
     18 numbers = [1, "a", 3]
---> 19 input_model = StatisticsInput(data=numbers)

ValidationError: 1 validation error for StatisticsInput
data.1
  Input should be a valid number, unable to parse string as a number [type=float_parsing, input_value='a', input_type=str]

Beartype offers efficient runtime type checking with constant time complexity. Its dynamic wrappers around functions and methods enable flexible and efficient type-checking, making it a great choice for ensuring type safety in your code.

Link to Beartype.

Leave a Comment

Your email address will not be published. Required fields are marked *

0
    0
    Your Cart
    Your cart is empty
    Scroll to Top

    Work with Khuyen Tran

    Work with Khuyen Tran