When working with Spark SQL queries, using regular Python string interpolation can lead to security vulnerabilities and require extra steps like creating temporary views. PySpark offers a better solution with parameterized queries, which:
- Protect against SQL injection
- Allow using DataFrame objects directly in queries
- Automatically handle date formatting
- Provide a more expressive way to write SQL queries
Let’s explore this concept with a practical example.
First, we’ll create a Spark DataFrame to work with:
import pandas as pd
from datetime import date
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
item_price_pandas = pd.DataFrame({
"item_id": [1, 2, 3, 4],
"price": [4, 2, 5, 1],
"transaction_date": [
date(2023, 1, 15),
date(2023, 2, 1),
date(2023, 3, 10),
date(2023, 4, 22)
]
})
item_price = spark.createDataFrame(item_price_pandas)
item_price.show()
+-------+-----+----------------+
|item_id|price|transaction_date|
+-------+-----+----------------+
| 1| 4| 2023-01-15|
| 2| 2| 2023-02-01|
| 3| 5| 2023-03-10|
| 4| 1| 2023-04-22|
+-------+-----+----------------+
Now, let’s compare the traditional approach with PySpark’s parameterized queries.
Traditional approach
This approach requires creating a temporary view and manually formatting the date:
item_price.createOrReplaceTempView("item_price_view")
transaction_date = "2023-02-15"
query = f"""SELECT *
FROM item_price_view
WHERE transaction_date > '{transaction_date}'
"""
spark.sql(query).show()
+-------+-----+----------------+
|item_id|price|transaction_date|
+-------+-----+----------------+
| 3| 5| 2023-03-10|
| 4| 1| 2023-04-22|
+-------+-----+----------------+
PySpark’s Parameterized Query Approach
This method is more secure and doesn’t require a temporary view:
query = """SELECT *
FROM {item_price}
WHERE transaction_date > {transaction_date}
"""
spark.sql(query, item_price=item_price, transaction_date=transaction_date).show()
+-------+-----+----------------+
|item_id|price|transaction_date|
+-------+-----+----------------+
| 3| 5| 2023-03-10|
| 4| 1| 2023-04-22|
+-------+-----+----------------+
This method allows for easy parameter substitution and direct use of DataFrames, making your Spark SQL queries both safer and more convenient to write and maintain.