Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Filter by Categories
About Article
Analyze Data
Archive
Best Practices
Better Outputs
Blog
Code Optimization
Code Quality
Command Line
Daily tips
Dashboard
Data Analysis & Manipulation
Data Engineer
Data Visualization
DataFrame
Delta Lake
DevOps
DuckDB
Environment Management
Feature Engineer
Git
Jupyter Notebook
LLM
LLM
Machine Learning
Machine Learning
Machine Learning & AI
Manage Data
MLOps
Natural Language Processing
NumPy
Pandas
Polars
PySpark
Python Tips
Python Utilities
Python Utilities
Scrape Data
SQL
Testing
Time Series
Tools
Visualization
Visualization & Reporting
Workflow & Automation
Workflow Automation

Simplifying Complex Functions with Python Dataclasses

Table of Contents

Simplifying Complex Functions with Python Dataclasses

Having multiple function parameters can make code hard to maintain and prone to errors. In this article, we will explore how to simplify function parameters using dataclasses.

What are Dataclasses?

Dataclasses are a simple way to create classes that primarily hold data. They provide a simple syntax for creating classes, making them ideal for grouping related data into simple data structures.

The Problem: Multiple Function Parameters

We will start by creating two different datasets.

import numpy as np
import matplotlib.pyplot as plt

# Generate sample time series data
np.random.seed(42)

# Dataset 1: Stock-like price movements
n_points = 100
trend1 = np.linspace(100, 150, n_points)
noise1 = np.cumsum(np.random.normal(0, 1, n_points))
stock_prices = trend1 + noise1

# Dataset 2: Seasonal pattern with noise
t = np.linspace(0, 4*np.pi, n_points)
seasonal_data = 10 * np.sin(t) + np.random.normal(0, 1, n_points)

Now, let’s define the plot_time_series function using many arguments.

def plot_time_series(
    data,
    x_label: str,
    y_label: str,
    title: str,
    line_color: str = "blue",
    line_width: float = 1.5,
    marker: str = "o",
    marker_size: int = 6,
    grid: bool = True,
):
    plt.style.use("dark_background")
    plt.plot(
        data,
        color=line_color,
        linewidth=line_width,
        marker=marker,
        markersize=marker_size,
    )
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    plt.title(title)
    if grid:
        plt.grid(True)
    plt.show()

Reusing this function for different datasets requires passing the same arguments for the line color, line width, marker, marker size, and grid for both datasets, which can be error-prone and difficult to maintain.

plot_time_series(
    data=stock_prices,
    x_label="Trading Days",
    y_label="Stock Price ($)",
    title="Simulated Stock Price Movement",
    line_color="#72BEFA",
    line_width=1.5,
    marker=".",
    marker_size=8,
    grid=True,
)

plot_time_series(
    data=seasonal_data,
    x_label="Time",
    y_label="Amplitude",
    title="Seasonal Pattern with Noise",
    line_color="#72BEFA",
    line_width=1.5,
    marker=".",
    marker_size=8,
    grid=True,
)

The Solution: Dataclasses

With Dataclasses, we can group styling parameters into a PlotStyle dataclass.

from dataclasses import dataclass

@dataclass
class PlotStyle:
    line_color: str = "#72BEFA"
    line_width: float = 1.5
    marker: str = "."
    marker_size: int = 8
    grid: bool = True

Then modify the plot_time_series function to accept a PlotStyle object.

def plot_time_series(
    data, x_label: str, y_label: str, title: str, style: PlotStyle = PlotStyle()
):
    plt.plot(
        data,
        color=style.line_color,
        linewidth=style.line_width,
        marker=style.marker,
        markersize=style.marker_size,
    )
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    plt.title(title)
    if style.grid:
        plt.grid(True)
    plt.show()

Now we can create a custom style once and reuse it for multiple plots.

custom_style = PlotStyle(line_color="#E583B6", marker=".", marker_size=8)

plot_time_series(stock_prices, "Time", "Value 1", "Plot 1", custom_style)

plot_time_series(seasonal_data, "Time", "Value 2", "Plot 2", custom_style)

By using dataclasses, we can avoid passing multiple arguments to the function and make the code more maintainable.

Leave a Comment

Your email address will not be published. Required fields are marked *

0
    0
    Your Cart
    Your cart is empty
    Scroll to Top

    Work with Khuyen Tran

    Work with Khuyen Tran