Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Filter by Categories
About Article
Analyze Data
Archive
Best Practices
Better Outputs
Blog
Code Optimization
Code Quality
Command Line
Daily tips
Dashboard
Data Analysis & Manipulation
Data Engineer
Data Visualization
DataFrame
Delta Lake
DevOps
DuckDB
Environment Management
Feature Engineer
Git
Jupyter Notebook
LLM
LLM
Machine Learning
Machine Learning
Machine Learning & AI
Manage Data
MLOps
Natural Language Processing
NumPy
Pandas
Polars
PySpark
Python Tips
Python Utilities
Python Utilities
Scrape Data
SQL
Testing
Time Series
Tools
Visualization
Visualization & Reporting
Workflow & Automation
Workflow Automation

Delta Lake vs Parquet: Preventing Data Loss During Write Operations

Table of Contents

Delta Lake vs Parquet: Preventing Data Loss During Write Operations

Traditional data storage methods, such as plain Parquet files, are susceptible to partial failures during write operations. This can result in incomplete data files and a lack of clear recovery options in the event of a system crash.

Delta Lake’s write operation with ACID transactions helps solve this by:

  • Ensuring either all data is written successfully or none of it is
  • Maintaining a transaction log that tracks all changes
  • Providing time travel capabilities to recover from failures

Here’s an example showing Delta Lake’s reliable write operation:

from deltalake import write_deltalake, DeltaTable
import pandas as pd

initial_data = pd.DataFrame({
    "id": [1, 2],
    "value": ["a", "b"]
})

write_deltalake("customers", initial_data)

If the append operation fails halfway, Delta Lake’s transaction log ensures that the table remains in its last valid state.

try:
    # Simulate a large append that fails halfway
    new_data = pd.DataFrame({
        "id": range(3, 1003),  # 1000 new rows
        "value": ["error"] * 1000
    })

    # Simulate system crash during append
    raise Exception("System crash during append!")
    write_deltalake("customers", new_data, mode="append")

except Exception as e:
    print(f"Write failed: {e}")

    # Check table state - still contains only initial data
    dt = DeltaTable("customers")
    print("\nTable state after failed append:")
    print(dt.to_pandas())

    # Verify version history
    print(f"\nCurrent version: {dt.version()}")

Output:

Write failed: System crash during append!

Table state after failed append:
   id value
0   1     a
1   2     b

Current version: 0

Link to Delta Lake.

Leave a Comment

Your email address will not be published. Required fields are marked *

0
    0
    Your Cart
    Your cart is empty
    Scroll to Top

    Work with Khuyen Tran

    Work with Khuyen Tran