...

Simplify CSV Data Management with DuckDB

Simplify CSV Data Management with DuckDB

The Traditional Way

Traditional database systems require a predefined table schema and a subsequent data import process when working with CSV data. This can be a tedious and time-consuming process.

To demonstrate this, let’s create a CSV file called customer.csv.

import pandas as pd

# Create a sample dataframe
data = {
    "name": ["Alice", "Bob", "Charlie", "David", "Eve"],
    "age": [25, 32, 45, 19, 38],
    "city": ["New York", "London", "Paris", "Berlin", "Tokyo"],
}

df = pd.DataFrame(data)

# Save the dataframe as a CSV file
df.to_csv("customers.csv", index=False)

To load this CSV file in Postgres, you need to run the following query:

-- Create the table
CREATE TABLE customers (
    name VARCHAR(100),
    age INT,
    city VARCHAR(100)
);

-- Load data from CSV
COPY customers
FROM 'customers.csv'
DELIMITER ','
CSV HEADER;

The DuckDB Way

In contrast, DuckDB allows for direct reading of CSV files from disk, eliminating the need for explicit table creation and data loading.

import duckdb

duckdb.sql("SELECT * FROM 'customers.csv'")
┌─────────┬───────┬──────────┐
│  name   │  age  │   city   │
│ varchar │ int64 │ varchar  │
├─────────┼───────┼──────────┤
│ Alice   │    25 │ New York │
│ Bob     │    32 │ London   │
│ Charlie │    45 │ Paris    │
│ David   │    19 │ Berlin   │
│ Eve     │    38 │ Tokyo    │
└─────────┴───────┴──────────┘

By using DuckDB, you can simplify your data import process and focus on analyzing your data.

Installation

To use DuckDB, you can install it using pip:

pip install duckdb 

Link to DuckDB.

Scroll to Top

Work with Khuyen Tran

Work with Khuyen Tran

Seraphinite AcceleratorOptimized by Seraphinite Accelerator
Turns on site high speed to be attractive for people and search engines.