Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Filter by Categories
About Article
Analyze Data
Archive
Best Practices
Better Outputs
Blog
Code Optimization
Code Quality
Command Line
Daily tips
Dashboard
Data Analysis & Manipulation
Data Engineer
Data Visualization
DataFrame
Delta Lake
DevOps
DuckDB
Environment Management
Feature Engineer
Git
Jupyter Notebook
LLM
LLM
Machine Learning
Machine Learning
Machine Learning & AI
Manage Data
MLOps
Natural Language Processing
NumPy
Pandas
Polars
PySpark
Python Tips
Python Utilities
Python Utilities
Scrape Data
SQL
Testing
Time Series
Tools
Visualization
Visualization & Reporting
Workflow & Automation
Workflow Automation

Best Practices for PySpark DataFrame Comparison Testing

Table of Contents

Best Practices for PySpark DataFrame Comparison Testing

When testing PySpark code, it’s essential to verify that the output DataFrames match our expectations. However, manually comparing DataFrame outputs using collect() and equality comparison can lead to brittle tests and unclear error messages.

Let’s consider an example where we create two DataFrames, result_df and expected_df, with the same data but in a different order.

# Manual DataFrame comparison
result_df = spark.createDataFrame(
    [(1, "Alice", 100), (2, "Bob", 200)], ["id", "name", "value"]
)

expected_df = spark.createDataFrame(
    [(2, "Bob", 200), (1, "Alice", 100)], ["id", "name", "value"]
)

assert result_df.collect() == expected_df.collect()

Running this test will fail due to the ordering issue, resulting in an unclear error message:

AssertionError: assert [Row(id=1, name='Alice', value=100), Row(id=2, name='Bob', value=200)] == [Row(id=2, name='Bob', value=200), Row(id=1, name='Alice', value=100)]
 +  where [Row(id=1, name='Alice', value=100), Row(id=2, name='Bob', value=200)] = <bound method DataFrame.collect of DataFrame[id: bigint, name: string, value: bigint]>()
 +    where <bound method DataFrame.collect of DataFrame[id: bigint, name: string, value: bigint]> = DataFrame[id: bigint, name: string, value: bigint].collect
 +  and   [Row(id=2, name='Bob', value=200), Row(id=1, name='Alice', value=100)] = <bound method DataFrame.collect of DataFrame[id: bigint, name: string, value: bigint]>()
 +    where <bound method DataFrame.collect of DataFrame[id: bigint, name: string, value: bigint]> = DataFrame[id: bigint, name: string, value: bigint].collect

Fortunately, PySpark provides a more robust way to compare DataFrames: assertDataFrameEqual. This function allows for order-independent comparison, making it ideal for testing DataFrame outputs.

# Testing with DataFrame equality
from pyspark.testing.utils import assertDataFrameEqual

result_df = spark.createDataFrame(
    [(1, "Alice", 100), (2, "Bob", 200)], ["id", "name", "value"]
)

expected_df = spark.createDataFrame(
    [(2, "Bob", 200), (1, "Alice", 100)], ["id", "name", "value"]
)

assertDataFrameEqual(result_df, expected_df)

In this example, the test will pass because assertDataFrameEqual ignores the order of the rows.

Another limitation of manual DataFrame comparison is that it cannot detect type mismatch. If the types of the columns are different, the comparison will pass, even if the data is not compatible.

Let’s consider an example:

# Manual DataFrame comparison
result_df = spark.createDataFrame(
    [(1, "Alice", 100), (2, "Bob", 200)], ["id", "name", "value"]
)

expected_df = spark.createDataFrame(
    [(1, "Alice", 100.0), (2, "Bob", 200.0)], ["id", "name", "value"]
)

assert result_df.collect() == expected_df.collect()

In this example, the test will pass, even though the types of the value column are different.

Using assertDataFrameEqual, we can detect type mismatch and ensure that the data is compatible:

assertDataFrameEqual(result_df, expected_df)

In this example, the test will fail because the types of the value column are different:

[DIFFERENT_SCHEMA] Schemas do not match.
--- actual
+++ expected
- StructType([StructField('id', LongType(), True), StructField('name', StringType(), True), StructField('value', LongType(), True)])
?                                                                                                                ^ ^^

+ StructType([StructField('id', LongType(), True), StructField('name', StringType(), True), StructField('value', DoubleType(), True)])
?                                                                                                                ^ ^^^^

Conclusion

Manual DataFrame comparison using collect() and equality comparison can lead to brittle tests and unclear error messages. By using assertDataFrameEqual, we can write more robust tests that ignore the order of the rows and detect type mismatch. This approach ensures that our tests are reliable and maintainable, even as our data evolves.

Leave a Comment

Your email address will not be published. Required fields are marked *

0
    0
    Your Cart
    Your cart is empty
    Scroll to Top

    Work with Khuyen Tran

    Work with Khuyen Tran