Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Filter by Categories
About Article
Analyze Data
Archive
Best Practices
Better Outputs
Blog
Code Optimization
Code Quality
Command Line
Daily tips
Dashboard
Data Analysis & Manipulation
Data Engineer
Data Visualization
DataFrame
Delta Lake
DevOps
DuckDB
Environment Management
Feature Engineer
Git
Jupyter Notebook
LLM
LLM
Machine Learning
Machine Learning
Machine Learning & AI
Manage Data
MLOps
Natural Language Processing
NumPy
Pandas
Polars
PySpark
Python Tips
Python Utilities
Python Utilities
Scrape Data
SQL
Testing
Time Series
Tools
Visualization
Visualization & Reporting
Workflow & Automation
Workflow Automation

Polars vs. Pandas: A Fast, Multi-Core Alternative for DataFrames

Table of Contents

Polars vs. Pandas: A Fast, Multi-Core Alternative for DataFrames

Introduction

Pandas has been the standard tool for working with tabular data in Python for many years. But as datasets get larger and performance becomes more important, Polars, an increasingly popular choice for handling data in Polars Python, is a faster alternative that uses multiple CPU cores.

This guide compares Polars and Pandas, highlighting where Polars shines and showing how to get started with it.

The source code of this article can be found here:

Why Consider Polars?

Polars is a DataFrame library written in Rust, designed for high performance. Key advantages:

  • Multi-threaded by default
  • Lazy execution for optimization
  • Low memory usage
  • Strong support for Arrow and Parquet

Let’s explore how Polars improves upon Pandas with practical examples.

Setup

Install both libraries and generate a sample dataset for testing:

pip install pandas polars

To follow along with the examples, you can generate a large CSV file like this:

import pandas as pd
import numpy as np

# Create a large dataset
n_rows = 10_000_000
data = {
    "category": np.random.choice(["A", "B", "C", "D"], size=n_rows),
    "value": np.random.rand(n_rows) * 1000
}
df = pd.DataFrame(data)

This will create a large_file.csv with 10 million rows for performance testing.

Multi-Core Performance

Pandas uses multiple CPU cores for data processing, while Pandas relies on a single core. Thus, Polars manages larger datasets more efficiently and often performs operations faster than Pandas.

Let’s benchmark a few common operations using Pandas and Polars: reading CSVs, groupby, filter, and sort.

Timing Decorator

We define a reusable timing decorator to simplify benchmarking in this section:

import time
from functools import wraps

def timeit(operation_name):
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            start_time = time.time()
            result = func(*args, **kwargs)
            end_time = time.time()
            execution_time = end_time - start_time
            print(f"{operation_name} took {execution_time:.2f} seconds")
            return result, execution_time
        return wrapper
    return decorator

Plotting Setup

Let’s define a helper function to simplify chart creation for each operation.

import matplotlib.pyplot as plt
import seaborn as sns

def create_comparison_plot(pandas_time, polars_time, title, plt, sns):
    sns.barplot(
        hue=["Pandas", "Polars"],
        y=[pandas_time, polars_time],
        palette=["#E583B6", "#72BEFA"],
    )
    plt.title(f"{title} (seconds)")
    plt.ylabel("Time (s)")
    plt.show()

Reading CSV Files

Pandas:

@timeit("Pandas read_csv")
def read_pandas():
    return pd.read_csv("large_file.csv")

pandas_df, pandas_read_time = read_pandas()

Output:

Pandas read_csv took 1.38 seconds

Polars:

import polars as pl

@timeit("Polars read_csv")
def read_polars():
    return pl.read_csv("large_file.csv")

polars_df, polars_read_time = read_polars()

Output:

Polars read_csv took 0.15 seconds
create_comparison_plot(pandas_read_time, polars_read_time, "CSV Read Time")

Groupby Mean

Pandas:

@timeit("Pandas groupby")
def pandas_groupby(df):
    return df.groupby("category")["value"].mean()

pandas_result, pandas_groupby_time = pandas_groupby(pandas_df)

Output:

Pandas groupby took 0.53 seconds

Polars:

@timeit("Polars groupby")
def polars_groupby(df):
    return df.group_by("category").agg(pl.col("value").mean())

polars_result, polars_groupby_time = polars_groupby(polars_df)

Output:

Polars groupby took 0.20 seconds
create_comparison_plot(pandas_groupby_time, polars_groupby_time, "Groupby Mean Time")

Filter Rows

Pandas:

@timeit("Pandas filter")
def pandas_filter(df):
    return df[df["value"] > 500]

pandas_filtered, pandas_filter_time = pandas_filter(pandas_df)

Output:

Pandas filter took 0.15 seconds

Polars:

@timeit("Polars filter")
def polars_filter(df):
    return df.filter(pl.col("value") > 500)

polars_filtered, polars_filter_time = polars_filter(polars_df)

Output:

Polars filter took 0.03 seconds
create_comparison_plot(pandas_filter_time, polars_filter_time, "Filter Rows Time")

Sort by Column

Pandas:

@timeit("Pandas sort")
def pandas_sort(df):
    return df.sort_values("value")

pandas_sorted, pandas_sort_time = pandas_sort(pandas_df)

Output:

Pandas sort took 2.74 seconds

Polars:

@timeit("Polars sort")
def polars_sort(df):
    return df.sort("value")

polars_sorted, polars_sort_time = polars_sort(polars_df)

Output:

Polars sort took 0.49 seconds
create_comparison_plot(pandas_sort_time, polars_sort_time, "Sort Time")

Observations

Polars consistently outperformed Pandas across all operations:

  • CSV Reading: 9× faster
  • Groupby: Over 2.5× faster
  • Filtering: 5× faster
  • Sorting: 5.5× faster

This performance advantage is largely due to Polars’ native Rust engine and multi-threaded execution. It’s especially valuable for large-scale data processing pipelines.

Lazy Evaluation (Only in Polars)

Pandas executes operations eagerly, which can be inefficient for large pipelines. For example:

(
    pd.read_csv("large_file.csv")
    .query('value > 100')
    .groupby('category', as_index=False)['value']
    .mean()
    .rename(columns={"value": "avg_value"})
)

This code is inefficient because:

  • Full CSV Load: Pandas loads the entire file into memory, even rows or columns we won’t use.
  • No Predicate Pushdown: The .query() filter is applied after reading all rows, not during the read.
  • No Projection Pushdown: All columns are read from disk, even if we only use value and category.

Polars supports lazy evaluation, which plans and optimizes the entire computation graph before execution:

query = (
    pl.read_csv("large_file.csv").lazy()
    .filter(pl.col("value") > 100)
    .group_by("category")
    .agg(pl.col("value").mean().alias("avg_value"))
)

print(query.explain())

Output:

FILTER [(col("avg_value")) > (100.0)]
FROM
  AGGREGATE
    [col("value").mean().alias("avg_value")] BY [col("category")]
    FROM
    DF ["category", "value"]; PROJECT["value", "category"] 2/2 COLUMNS

Optimizations used by Polars:

  • Lazy Execution: The computation is deferred and optimized before execution.
  • Predicate Pushdown: Filters like value > 100 are applied during the scan, skipping irrelevant rows.
  • Projection Pushdown: Only necessary columns (category and value) are read.
  • Single-Pass Execution: Operations can be executed in a streaming manner, improving performance.

The pipeline is only executed when .collect() is called:

result = query.collect()
result.head()

Output:

shape: (4, 2)
┌──────────┬────────────┐
│ category ┆ avg_value  │
│ ---      ┆ ---        │
│ str      ┆ f64        │
╞══════════╪════════════╡
│ A        ┆ 550.245739 │
│ C        ┆ 549.985808 │
│ D        ┆ 549.649933 │
│ B        ┆ 550.055504 │
└──────────┴────────────┘

Syntax Comparison

Both libraries offer expressive APIs, but Polars’ syntax is more functional and chainable, which makes it easier to write pipelines with multiple operations in a single expression.

Filtering rows

Pandas:

df_pd.query("value > 1000")

Polars:

df_pl.filter(pl.col("value") > 1000)

Selecting columns

Pandas:

df_pd[["category", "value"]]

Polars:

df_pl.select(["category", "value"])

Polars feels more like writing SQL pipelines, especially in lazy mode.

Chained operations

Pandas:

(df_pd.query("value > 1000")
 .groupby("category")["value"]
 .mean()
 .reset_index())

Polars:

(df_pl
 .filter(pl.col("value") > 1000)
 .group_by("category")
 .agg(pl.col("value").mean().alias("avg_value")))

Polars lets you chain operations together, which often makes code more readable and efficient.

Memory Efficiency

Polars uses Apache Arrow under the hood, which is columnar and compact. It avoids Python object overhead, unlike Pandas.

df_pd.memory_usage(deep=True).sum() / 1e6  # MB
df_pl.estimated_size() / 1e6  # MB

Polars usually consumes less memory, especially with strings or categorical data.

Missing Features (Where Pandas Wins)

While Polars is fast, Pandas is still better at:

  • Interoperability with other Python libraries (e.g., matplotlibscikit-learn)
  • Rich ecosystem (e.g., pandas-profilingpandasql)
  • More mature and flexible time series tools

Summary

When to Use Polars vs. Pandas

ScenarioUse Polars ✅Use Pandas ✅
Large datasets and file sizes✅ Yes⚠️ May struggle with memory
Fast CSV/Parquet I/O✅ Much faster🚫 Slower for large files
Multi-core performance✅ Built-in multi-threading🚫 Single-threaded by default
Lazy evaluation for optimized pipelines✅ Supported🚫 Not available
Low memory consumption✅ Apache Arrow backend🚫 Higher memory overhead
Integration with scikit-learn, statsmodels, etc.🚫 Limited✅ Excellent ecosystem integration
Flexible time series handling🚫 Basic support✅ Advanced and robust
Small-to-medium datasets⚠️ May be overkill✅ Simple and effective

Final Thoughts

Polars is not here to replace Pandas—but it’s an excellent choice when performance matters. If your workflows are slow or memory-bound, Polars can drastically reduce execution time without compromising expressiveness.

Tip: You can even mix both libraries. Load and process large files with Polars, then convert to Pandas when needed:

df_pd = df_pl.to_pandas()

Leave a Comment

Your email address will not be published. Required fields are marked *

0
    0
    Your Cart
    Your cart is empty
    Scroll to Top

    Work with Khuyen Tran

    Work with Khuyen Tran