...
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Filter by Categories
About Article
Analyze Data
Archive
Best Practices
Better Outputs
Blog
Code Optimization
Code Quality
Command Line
Daily tips
Dashboard
Data Analysis & Manipulation
Data Engineer
Data Visualization
DataFrame
Delta Lake
DevOps
DuckDB
Environment Management
Feature Engineer
Git
Jupyter Notebook
LLM
LLM
Machine Learning
Machine Learning
Machine Learning & AI
Manage Data
MLOps
Natural Language Processing
NumPy
Pandas
Polars
PySpark
Python Tips
Python Utilities
Python Utilities
Scrape Data
SQL
Testing
Time Series
Tools
Visualization
Visualization & Reporting
Workflow & Automation
Workflow Automation

PySpark Best Practices: Simplifying Logical Chain Conditions

Table of Contents

PySpark Best Practices: Simplifying Logical Chain Conditions

Long chains of logical conditions in PySpark can make code difficult to understand and modify.

from pyspark.sql import functions as F

data = [(1200, 3, 1), (2000, 2, 0), (1500, 3, 2), (1100, 2, 1)]
df = spark.createDataFrame(data, ["total_purchases", "loyalty_years", "returns"])
df.withColumn(
    "discount_eligible",
    F.when(
        (F.col("total_purchases") > 1000)
        & (F.col("loyalty_years") >= 2)
        & (F.col("returns") < 3),
        True,
    ).otherwise(False),
).show()
+---------------+-------------+-------+-----------------+
|total_purchases|loyalty_years|returns|discount_eligible|
+---------------+-------------+-------+-----------------+
|           1200|            3|      1|             true|
|           2000|            2|      0|             true|
|           1500|            3|      2|             true|
|           1100|            2|      1|             true|
+---------------+-------------+-------+-----------------+

To improve readability and maintainability, break down complex logic into meaningful variables:

# Define loyal customer conditions
has_high_spend = F.col("total_purchases") > 1000
is_long_term = F.col("loyalty_years") >= 2
has_few_returns = F.col("returns") < 3

# Combine conditions for discount eligibility
loyal_customer_condition = has_high_spend & is_long_term & has_few_returns

(
    df.withColumn(
        "discount_eligible", F.when(loyal_customer_condition, True).otherwise(False)
    )
).show()
+---------------+-------------+-------+-----------------+
|total_purchases|loyalty_years|returns|discount_eligible|
+---------------+-------------+-------+-----------------+
|           1200|            3|      1|             true|
|           2000|            2|      0|             true|
|           1500|            3|      2|             true|
|           1100|            2|      1|             true|
+---------------+-------------+-------+-----------------+

Benefits of this approach:

  • Business logic is clearly documented through function names.
  • Easier to add new conditions without cluttering main logic.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top

Work with Khuyen Tran

Work with Khuyen Tran

Seraphinite AcceleratorOptimized by Seraphinite Accelerator
Turns on site high speed to be attractive for people and search engines.